
003-Topic: Logical Arrays & Masks

1. Given n=14;

ii=[1:1:n+1];

By logical arrays produce the following sequence with n+1 elements:

 c=[0 1 0 1 0 1 0 1 0 1 0 1 0 1 0]

SOLUTION

n=14;

ii=[1:1:n+1]; % ii stands for the c indices

c= mod(ii,2)==0 % Note that n+1 coefficients are created

c =

 0 1 0 1 0 1 0 1 0 1 0

2. For the array:

ii= [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20];

Create a logical array that identifies values equal or smaller than 10 within ii.

SOLUTION

 ii=[1:1:20];

 LA=ii<=10; % LA=logical array

 ii(LA) % remove “;” to print on the screen

3. For the array:

ii= [1:1:10];

Create a logical array that identifies values smaller than 5 or greater than or equal to 8. Store results

on the new array ii58.

SOLUTION

 ii=[1:1:10];

 LA=ii<5 | ii>=8; % LA=logical array

 ii58 = ii(LA); % LA is used as index of ii-array, i.e., a mask

4. For the array ii=[3:3:99] create a logical array that identifies multiple-of-6 values and store them

in the new ii6 array

SOLUTION

ii= [3:3:99];

LA=mod(ii,6)==0;

ii6=ii(LA); % LA is used as index of ii-array, LA is a mask

5. Given

A = [1:1:100];

Count the multiple-of-seven elements in the A-array. Print the result.

ANSWER

A=[1:1:100];

B=mod(A,7)==0;

Count=sum(B); % sum add up logical values as numbers? interesting

fprintf(‘There are %d multiple-of-seven values in the range [1,100]’,Count);

6. By the random function “rand” creates the score array of 50 values in the range of [0,100]

representing the scores of the partial examen 1 of the inge3016 class for 50 students. Create the

logical array passLA that identifies scores greater or equal to 60. Use this array to separate the

passing students from the class set and store them in the new pass array.

ANSWER

score=rand(1,50).*100; % creates a set of ‘fake’ grades for a 50-student class

passLA=score>=60; %passLA is the logical array

pass=score(passLA); %pass contains only the student that passed the course

7. The inge3016 class has 40 students whose final scores are stored in ng=[78,97,59,84,…88].

Where ng(1) is the score of student 1, ng(2) is the score of student 2 and so on. By logical arrays

(and masks, if necessary) count the number of students who got A, B, C, D, and F.

ANSWER

ng=[78,97,59,84,…88];

A=ng>=90;

B=ng>=80 & ng <90;

C=ng>=70 & ng<80;

D=ng>=60 & ng<70; % A, B, C, D and F are logical arrays

cA=sum(A); cB=sum(B); cC=sum(C); cD=sum(D); cF=sum(F);

% The last statements can be replaced by:

cA=length(ng(A));

cB=length(ng(B));

cC=length(ng(C));

cD=length(ng(D));

cF=length(ng(F));

8. For the Puerto Rican population of 4 million, we know the age of each individual stored in the age

array as age=[3, 74, 56, 12, …, 26, 21]. We are interested in counting the number of voters in PR.

By the logical array vote, identify the number of voters (the voting age is 18). Use a library

function to count the number of voters eligible to vote in age array.

ANSWER

age=[3, 74, 56, 12, …, 26, 21]; % 4 million elements

vote=age>=18; % vote is the logical array

nv=numel(age(vote)) % nv=number of voters

% Last statement can be replaced by:

nv= sum(vote)

9. Given A=[10,9,8,4,5,6,7,1,2,3]’ substitute some values of A. Obtain the natural logarithm of the
values of A which are equal to their array index (i.e., A(ii)=ii) and store them into the same
position in A.

By logical array, mask, vectorized code % By loops and control logic

% LogicalAndMasks01.m
% Modifies A array
clc, clear

A=[10,9,8,4,5,6,7,1,2,3];
AA=A;

ii=1:numel(A);
B=A(ii)==ii; % logical array
A(B)=log(A(B));

 disp([AA',A']);

% LogicalAndMasks02.m
% Modifies A array
clc, clear

A=[10,9,8,4,5,6,7,1,2,3];
AA=A;
for ii=1:numel(A)
 if A(ii)==ii
 A(ii)=log(A(ii));
 end
end

 disp([AA',A']);

10. A number of Matlab’s functions are designed to execute a test of some sort, then return a logical

array. The output of these functions or commands is usually used as mask or index. For example,
create a magic square with the following command (consult MATLAB help to learn more about
the magic function).

Find all the primes in the matrix A with Matlab’s isprime function. After applying the isprime
function, each position that contains a logical 1 (true) indicates a prime in the corresponding
position of the matrix A. Please get a listing of the primes in matrix A.

SOLUTION

11.- Class Quiz (P2014): Given the array a=[9,8,7,6,5,4,3,2,1,0]. Square the elements of the a-array

whose values are equal to their indexes.

a=[9,8,7,6,5,4,3,2,1,0].

ii=[1,2,3,4,5,6,7,8,9,10]; % to represent the indices of the a array

LA=a==ii % compares each a value to its index

a(LA)=a(LA).^2; % squared elements are stored in the original array

12.- Emigrants (Class quiz). People, male and female professionals, in the range of [24,26] years of age

are most likely to emigrate from PR (to the USA) in the next 3 years. Identify the number of potential

emigrants and count them within the array age=[4, 45, 67, 13, 24, 93, 105, 7, 19, …,34]. The population

of PR is 3.5 millions

 % Given

clc,clear

age=rand(1,3.5e6)*100; % simulate actual age array

e=age>=24 & age<=26;

pe=numel(age(e));

13.- Logical Arrays and El Principito. By logical arrays find the number of “ñ” (eñes; MATLAB enhe)

that appears in the paragraph below.

% principitoProgram

% we only selected a piece from the above paragraph

clc, clear, close

prin4='manera a la edad de seis años abandoné una magnífica carrera de ';
enhe= 'ñ';

for ii=1:1:numel(prin4)
 enheL(ii)=strcmpi(prin4(ii),enhe); % compare each element of prin4 with ñ
end

% sum the true or 1's:
countenhe= sum(enheL)

% TF = strcmpi(str,str) compares two character vectors for equality, ignoring any differences in

letter case. The character vectors are considered to be equal if the size and content of each are the

same. The function returns a scalar logical 1 for equality, or scalar logical 0 for inequality. (see:

https://www.mathworks.com/help/matlab/ref/strcmpi.html)

14.- Masks and El Principito. By logical arrays and masks find the number of “ñ” (eñes) that appears in

the paragraph below and replace them by “n” (enes). Hint: assume the whole paragraph, starting with

the L and ending with the s, is stored in the array principito.

https://www.mathworks.com/help/matlab/ref/strcmpi.html#outputarg_TF
https://www.mathworks.com/help/matlab/ref/strcmpi.html#inputarg_str
https://www.mathworks.com/help/matlab/ref/strcmpi.html#inputarg_str

% principitoProgram

clc, clear, close

prin4='manera a la edad de seis años abandoné una magnífica carrera de ';

prin5='algo por sí solas y es muy aburrido para los niños tener que ';

principito=[prin4,prin5];

enhe= 'ñ';

for ii=1:1:(numel(prin4)+numel(prin5))

 enheL(ii)=strcmpi(principito(ii),enhe); % compare each element with ñ

end

% sum the true or 1's:

countenhe= sum(enheL)

OUTPUT

countenhe =

 2

15.- I want to create a logical array from x and y with the same size as

x. Whenever x=y the logical array contain 1's for a n samples,

otherwise 0's.

What is the quickest way to do that, other than writing for-loops?

Here is one way of doing it:

>> x = 1:1:10

x =

 1 2 3 4 5 6 7 8 9 10

>> y = [2, 5, 7]

y =

 2 5 7

>> z = ismember(x,y) % ismember function is logical, produces 0’s and 1’s

z =

 0 1 0 0 1 0 1 0 0 0

>> whos

 Name Size Bytes Class Attributes

 x 1x10 80 double

 y 1x3 24 double

 z 1x10 10 logical

16.- Bonus due to Attendance.

The absences of 39 students are stored in the array ABS=[0,1,3,0,0,0,5,0,0,0,….,1], thirty nine values.

Bonus due to attendance are:

 If student has perfect attendance (0 absences), ATT=3% added to the final examination score

(FAL)

 If student has 1 absence, ATT is equal to 2% added to the final examination score

 If student has 2 or more absences, ATT=0

Show how you can use logical arrays and masks to add ATT to FAL. Take into account that ABS-array

and FAL-array have same number of elements and students are identified by their index. HINT:

Develop three logical arrays using the three conditions above.

SOLUTION-1:

% Given

ABS=[0,1,3,0,0,0,5,0,0,0,….,1], % 39 VALUES

FAL=[89,78,96,100,99,56….93] %39 VALUES

tres = ABS == 0; % tres is a logical array

dos = ABS == 1; % dos is a logical array

cero= ABS >= 2; % cero is a logical array

FAL(tres) = FAL(tres) + 3; % tres is used as index of FAL, therefore tres is now a mask

FAL(dos) = FAL(dos) + 2; % dos is used as index of FAL, therefore dos is now a mask

FAL(cero) = FAL(cero) + 0; % cero is used as index of FAL, therefore cero is now a mask

SOLUTION-2:

% Given

ABS=[0,1,3,0,0,0,5,0,0,0,….,1], % 39 VALUES

FAL=[89,78,96,100,99,56….93] %39 VALUES

ATT=[0,2,3];

tres = ABS == 0; % tres is a logical array

dos = ABS == 1; % dos is a logical array

cero= ABS >= 2; % cero is a logical array

FAL(tres) = FAL(tres) + ATT(3); % tres is used as index of FAL, therefore tres is a mask

FAL(dos) = FAL(dos) + ATT(2); % dos is used as index of FAL, therefore dos is a mask

FAL(cero) = FAL(cero) + ATT(1); % cero is used as index of FAL, therefore cero is a mask

SOLUTION-3

Some student may be tempted to solve it as follows:

% Given

ABS=[0,1,3,0,0,0,5,0,0,0,….,1], % 39 VALUES

FAL=[89,78,96,100,99,56….93] %39 VALUES

for ii=1:1:nume(ABS)

 if ABS(ii)==0;

 FAL(ii)=FAL(ii)+3;

 elseif ABS(ii)==1;

 FAL(ii)=FAL(ii)+2;

 endif

end

HOWEVER, take into account that this is not the requested method. The solution-1 and solution-2 are

VECTORIZED , therefore both are faster than solution-1.

17.- A-Students: Given the Final Score (FS) array containing the final score of 40 students using logical

arrays and masks assign the letter grade ‘A’ to students obtaining a final score, FS>=90. Assign ‘Z’ to the

rest. Count the number of As.

With logical arrays and masks

% Assuming FS is already computed:

LG(1:1:numel(FS)) = ’Z’; % LG is a string containing 40 ‘Z’

FSA = FS>=90; % FSA is logical array

LG(FSA) = ’A’; % ‘A’ substitute ‘Z’ for ‘A’ students

countA = sum(FSA); % count the number of As

With for loops and if constructs:

% Assuming FS is already computed:

countA=0;

for ii=1:numel(FS))

 if FS(ii)>=90
 LG(ii)='A';
 countA=countA+1;
 else
 LG(ii)='Z';
 end

end

18. By logical arrays (and masks) construct the sequence of the coefficients C in the Simpson Rule

formulation:

C = [1 4 2 4 2 4 2 … 4 1]

SOLUTION-1
c=ones(1,n+1);
ii=[1:1:n+1];
b=mod(ii,2)==0;
c(b)=4.*c(b);
bb=mod(ii,2)~=0;
c(bb)=2.*c(bb);
c(1)=1;
c(n+1)=1;
(8 lines)

SOLUTION-2
c=ones(1,n+1);
ii=[1:1:n+1];
b=mod(ii,2)==0
c(b)=4.*c(b);
c(~b)=2.*c(~b);
c(1)=1;
c(n+1)=1;
(7 lines)

SOLUTION-3
c=ones(1,n+1);
b=mod(1:1:n+1,2)==0;
c(b)=4.*c(b);
bb=mod(1:1:n+1,2)~=0;
c(bb)=2.*c(bb);
c(1)=1;
c(n+1)=1;
(7 lines)

SOLUTION-4
c=ones(1,n+1);
b=mod(1:1:n+1,2)==0
c(b)=4.*c(b);
c(~b)=2.*c(~b);
c(1)=1;
c(n+1)=1;
(6 lines)

SOLUTION-5
c=ones(1,n+1);
b=mod(1:1:n+1,2)==0;
c(b)=4;
bb=mod(1:1:n+1,2)~=0;
c(bb)=2;
c(1)=1;
c(n+1)=1;
(7 lines)

SOLUTION-6
c=ones(1,n+1);
b=mod(1:1:n+1,2)==0
c(b)=4;
c(~b)=2;
c(1)=1;
c(n+1)=1;
(6 lines)

SOLUTION-7:
c=2.*ones(1,n+1);
b=mod(1:1:n+1,2)==0
c(b)=4;
c(1)=1;
c(n+1)=1;
(5 lines)

SOLUTION-8:
c(3:2:n-1)=2;
c(2:2:n)=4
c(1)=1;
c(n+1)=1;
(4 lines)

19. Next is an example of logical arrays application to the Midpoint Integration Rule

Midpoint Integration rule: I=2h(f2+f4+...+fn) where n is even

 clc, clear;

 a = 0; b = 3; n = 100; h = (b-a)/n;

 x = [a:h:b];

 f=exp(-x./2).* (2.*x-x.^2./2);

 ii=[1:1:n+1];

∫ 𝑒−
𝑥

2(2𝑥 −
𝑥2

2

𝑏=3

𝑎=0
)dx

 c = mod(ii,2)==0;

 t=c.*f; I=2*h*sum(t);

20. By logical arrays (and masks) construct the sequence of the coefficients C in the Simpson Rule

formulation:

C = [1 3 3 2 3 3 2… 3 3 1]

n=12;

c=3*ones(1,n+1); % also c(1:1:n+1)=3 % initially all are 3

ii=[1:1:n+1];

b=mod(ii,3)==1; % also b=mod(1:1:n+1,3)==1

c(b)=(2/3)*c(b); % also c(b)=2/3

c(1)=1;

c(n+1)=1;

c % to print the results

