003-Topic: Logical Arrays \& Masks

key

$$
\begin{array}{ll}
\text { 1. Given } & n=14 ; \\
& i \mathrm{i}=[1: 1: n+1] ;
\end{array}
$$

By logical arrays produce the following sequence with $n+1$ elements:

```
    c=[[0
```

SOLUTION

```
n=14;
ii=[1:1:n+1]; % ii stands for the c indices
c= mod(ii,2)==0 % Note that n+1 coefficients are created
c=
    0
```

2. For the array:
ii= $[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]$;
Create a logical array that identifies values equal or smaller than 10 within ii.

SOLUTION

```
ii=[1:1:20];
LA=ii<=10; % LA=logical array
ii(LA) % remove ";" to print on the screen
```

3. For the array:
ii= [1:1:10];

Create a logical array that identifies values smaller than 5 or greater than or equal to 8 . Store results on the new array ii58.

SOLUTION
ii=[1:1:10];
LA=ii<5 | ii>=8; \quad \% LA=logical array
ii58 = ii(LA);
\% LA is used as index of ii-array, i.e., a mask
4. For the array $\mathrm{ii}=[3: 3: 99]$ create a logical array that identifies multiple-of- 6 values and store them in the new ii6 array

SOLUTION

$\mathrm{ii}=[3: 3: 99] ;$
LA=mod(ii,6)==0;
ii6=ii(LA); \% LA is used as index of ii-array, LA is a mask
5. Given

A $=$ [1:1:100];
Count the multiple-of-seven elements in the A-array. Print the result.

ANSWER

$A=[1: 1: 100] ;$
$B=\bmod (A, 7)==0$;
Count=sum(B); \% sum add up logical values as numbers? interesting
fprintf('There are \%d multiple-of-seven values in the range $[1,100]^{\prime}$,Count);
6. By the random function "rand" creates the score array of 50 values in the range of $[0,100]$ representing the scores of the partial examen 1 of the inge 3016 class for 50 students. Create the logical array passLA that identifies scores greater or equal to 60 . Use this array to separate the passing students from the class set and store them in the new pass array.

ANSWER

```
score=rand(1,50).*100; % creates a set of 'fake' grades for a 50-student class
passLA=score>=60; %passLA is the logical array
pass=score(passLA); %pass contains only the student that passed the course
```

7. The inge 3016 class has 40 students whose final scores are stored in $n g=[78,97,59,84, \ldots .88]$. Where $n g(1)$ is the score of student $1, n g(2)$ is the score of student 2 and so on. By logical arrays (and masks, if necessary) count the number of students who got A, B, C, D, and F.

ANSWER
ng=[78,97,59,84,...88];

A=ng>=90;
B=ng>=80 \& ng <90;

```
C=ng>=70 & ng<80;
D=ng>=60 & ng<70; % A, B, C, D and F are logical arrays
cA=sum(A); cB=sum(B); cC=sum(C); cD=sum(D); cF=sum(F);
% The last statements can be replaced by:
cA=length(ng(A));
cB=length(ng(B));
cC=length(ng(C));
cD=length(ng(D));
cF=length(ng(F));
```

8. For the Puerto Rican population of 4 million, we know the age of each individual stored in the age array as age=[3, $74,56,12, \ldots, 26,21]$. We are interested in counting the number of voters in PR. By the logical array vote, identify the number of voters (the voting age is 18). Use a library function to count the number of voters eligible to vote in age array.

ANSWER

```
age=[3,74,56,12, .., 26, 21]; % 4 million elements
vote=age>=18;
nv=numel(age(vote))
% nv=number of voters
```

\% Last statement can be replaced by:
nv= sum(vote)
9. Given $A=[10,9,8,4,5,6,7,1,2,3]$ ' substitute some values of A. Obtain the natural logarithm of the values of A which are equal to their array index (i.e., $A(i i)=i i)$ and store them into the same position in A.

By logical array, mask, vectorized code	\% By loops and control logic
\% LogicalAndMasks01.m	\% LogicalAndMasks02.m
\% Modifies A array clc, clear	\% Modifies A array clc, clear
$A=[10,9,8,4,5,6,7,1,2,3] ;$	A=[10,9,8,4,5,6,7,1,2,3];
$\mathrm{AA}=\mathrm{A}$;	$A A=A ;$ for $\mathrm{ii}=1$:numel(A)
ii=1:numel(A);	if $A(i i)==i i$
$\mathrm{B}=\mathrm{A}(\mathrm{ii})==\mathrm{ii} ; \quad$ \% logical array	$\mathrm{A}(\mathrm{ii})=\log (\mathrm{A}(\mathrm{ii})$;
$A(B)=\log (A(B)) ;$	end
disp([AA', ${ }^{\text {' }}$]);	end $\operatorname{disp}\left(\left[\mathrm{AA}^{\prime}, \mathrm{A}^{\prime}\right]\right)$;

10. A number of Matlab's functions are designed to execute a test of some sort, then return a logical array. The output of these functions or commands is usually used as mask or index. For example, create a magic square with the following command (consult MATLAB help to learn more about the magic function).
```
>>A=magic (5)
A =
\begin{tabular}{rrrrr}
17 & 24 & 1 & 8 & 15 \\
23 & 5 & 7 & 14 & 16 \\
4 & 6 & 13 & 20 & 22 \\
10 & 12 & 19 & 21 & 3 \\
11 & 18 & 25 & 2 & 9
\end{tabular}
```

Find all the primes in the matrix A with Matlab's isprime function. After applying the isprime function, each position that contains a logical 1 (true) indicates a prime in the corresponding position of the matrix A. Please get a listing of the primes in matrix A.

SOLUTION

```
>>A=magic(5)
A =
\begin{tabular}{rrrrr}
17 & 24 & 1 & 8 & 15 \\
23 & 5 & 7 & 14 & 16 \\
4 & 6 & 13 & 20 & 22 \\
10 & 12 & 19 & 21 & 3 \\
11 & 18 & 25 & 2 & 9
\end{tabular}
```

We'll find all the primes in matrix A with Matlab's ispime command.

```
> B=isprime(A)
B =
\begin{tabular}{lllll}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0
\end{tabular}
```

Each position in matrix B that contains a, logical 1 (true) indicates a, prime in the corresponding position of matrix A. We can get a listing of the primes in matrix A.

```
    >> A(B)
ans =
    17
    23
    11
    5
    7
    13
    19
    2
    3
```

11.- Class Quiz (P2014): Given the array $a=[9,8,7,6,5,4,3,2,1,0]$. Square the elements of the a-array whose values are equal to their indexes.
$a=[9,8,7,6,5,4,3,2,1,0]$.
$\mathrm{ii}=[1,2,3,4,5,6,7,8,9,10] ; \quad$ \% to represent the indices of the a array
$\mathrm{LA}=\mathrm{a}==\mathrm{ii} \quad$ \% compares each a value to its index
$a(L A)=a(L A) .^{\wedge} 2 ; \quad$ \% squared elements are stored in the original array
12.- Emigrants (Class quiz). People, male and female professionals, in the range of $[24,26]$ years of age are most likely to emigrate from PR (to the USA) in the next 3 years. Identify the number of potential emigrants and count them within the array age $=[4,45,67,13,24,93,105,7,19, \ldots, 34]$. The population of $P R$ is 3.5 millions
\% Given
clc,clear

```
age=rand(1,3.5e6)*100; % simulate actual age array
e=age>=24 & age<=26;
pe=numel(age(e));
```

13.- Logical Arrays and El Principito. By logical arrays find the number of "ñ" (eñes; MATLAB \rightarrow enhe) that appears in the paragraph below.

Las personas mayores me aconsejaron abandonar el dibujo de serpientes boas, ya fueran abiertas o cerradas, y poner más interés en la geografia, la historia, el cálculo y la gramática. De esta manera a la edad de seis años abandoné una magnifica carrera de pintor. Habia quedado desilusionado por el fracaso de mis dibujos número 1 y número 2 . Las personas mayores nunca pueden comprender algo por si solas y es muy aburrido para los niños tener que darles una y otra vez explicaciones.

```
% principitoProgram
% we only selected a piece from the above paragraph
clc, clear, close
prin4='manera a la edad de seis años abandoné una magnífica carrera de ';
enhe= 'ñ';
for ii=1:1:numel(prin4)
    enheL(ii)=strcmpi(prin4(ii),enhe); % compare each element of prin4 with \tilde{n}
end
% sum the true or 1's:
countenhe= sum(enheL)
```

$\%$ TF = strcmpi(str, str) compares two character vectors for equality, ignoring any differences in letter case. The character vectors are considered to be equal if the size and content of each are the same. The function returns a scalar logical 1 for equality, or scalar logical 0 for inequality. (see: https://www.mathworks.com/help/matlab/ref/strcmpi.html)
14.- Masks and El Principito. By logical arrays and masks find the number of "ñ" (eñes) that appears in the paragraph below and replace them by " n " (enes). Hint: assume the whole paragraph, starting with the L and ending with the s, is stored in the array principito.

Las personas mayores me aconsejaron abandonar el dibujo de serpientes boas, ya fueran abiertas o cerradas, y poner más interés en la geografia, la historia, el cálculo y la gramática. De esta manera a la edad de seis años abandoné una magnifica carrera de pintor. Habia quedado desilusionado por el fracaso de mis dibujos número 1 y número 2 . Las personas mayores nunca pueden comprender algo por sí solas y es muy aburrido para los niños tener que darles una y otra vez explicaciones.
\% principitoProgram
clc, clear, close
prin4='manera a la edad de seis años abandoné una magnífica carrera de ';
prin5='algo por sí solas y es muy aburrido para los niños tener que ';
principito=[prin4,prin5];
enhe= 'ñ';
for $\mathrm{ii}=1: 1:($ numel(prin4)+numel(prin5))
enheL(ii)=strcmpi(principito(ii),enhe); \% compare each element with ñ
end
\% sum the true or 1's:
countenhe= sum(enheL)

OUTPUT
countenhe $=$

$$
2
$$

15.- I want to create a logical array from x and y with the same size as
x. Whenever $x=y$ the logical array contain 1's for a n samples, otherwise 0's.

What is the quickest way to do that, other than writing for-loops?

Here is one way of doing it:
$\gg x=1: 1: 10$
$\mathrm{x}=$
12345678910
$\gg y=[2,5,7]$

```
y =
    25
>> z = ismember(x,y) % ismember function is logical, produces 0's and 1's
z =
    0100101000
>> whos
Name Size Bytes Class Attributes
x 1x10 80 double
y 1x3 24 double
z 1x10 10 logical
```


16.- Bonus due to Attendance.

The absences of 39 students are stored in the array $A B S=[0,1,3,0,0,0,5,0,0,0, \ldots, 1]$, thirty nine values. Bonus due to attendance are:
\# If student has perfect attendance (0 absences), ATT=3\% added to the final examination score (FAL)
\# If student has 1 absence, ATT is equal to 2% added to the final examination score
\# If student has 2 or more absences, ATT=0

Show how you can use logical arrays and masks to add ATT to FAL. Take into account that ABS-array and FAL-array have same number of elements and students are identified by their index. HINT:
Develop three logical arrays using the three conditions above.

SOLUTION-1:

\% Given

```
ABS=[0,1,3,0,0,0,5,0,0,0,\ldots.,1], % 39 VALUES
FAL=[89,78,96,100,99,56\ldots...93] %39 VALUES
```

tres $=\mathrm{ABS}==0 ; \quad$ \% tres is a logical array
dos $=A B S==1 ; \quad \%$ dos is a logical array
cero $=A B S>=2 ; \quad \%$ cero is a logical array

FAL(tres $)=F A L($ tres $)+3 ;$	\% tres is used as index of FAL, therefore tres is now a mask
$F A L($ dos $)=F A L($ dos $)+2 ;$	\% dos is used as index of FAL, therefore dos is now a mask
$F A L($ cero $)=F A L($ cero $)+0 ;$	\% cero is used as index of FAL, therefore cero is now a mask

SOLUTION-2:

\% Given

$\mathrm{ABS}=[0,1,3,0,0,0,5,0,0,0, \ldots ., 1]$,	\% 39 VALUES
$\mathrm{FAL}=[89,78,96,100,99,56 \ldots .93]$	\%39 VALUES

$A T T=[0,2,3] ;$

tres $=A B S==0 ;$	\% tres is a logical array
dos $=A B S==1 ;$	\% dos is a logical array
cero $=A B S>=2 ;$	\% cero is a logical array

$\mathrm{FAL}($ tres $)=\mathrm{FAL}$ (tres) $+\mathrm{ATT}(3)$; \quad \% tres is used as index of FAL, therefore tres is a mask
FAL(dos) $=$ FAL(dos) + ATT(2); $\quad \%$ dos is used as index of FAL, therefore dos is a mask
FAL(cero) $=$ FAL(cero) $+\operatorname{ATT}(1)$; \quad \% cero is used as index of FAL, therefore cero is a mask

SOLUTION-3

Some student may be tempted to solve it as follows:

\% Given

$\mathrm{ABS}=[0,1,3,0,0,0,5,0,0,0, \ldots .1]$,	\% 39 VALUES
$\mathrm{FAL}=[89,78,96,100,99,56 \ldots .93]$	\%39 VALUES

for $\mathrm{i}=1: 1$: $\mathrm{nume}(A B S)$

```
    if \(\mathrm{ABS}(\mathrm{ii})==0\);
        FAL(ii)=FAL(ii)+3;
    elseif \(A B S(i i)==1\);
        FAL(ii)=FAL(ii)+2;
    endif
```

end

HOWEVER, take into account that this is not the requested method. The solution-1 and solution-2 are VECTORIZED , therefore both are faster than solution-1.
17.- A-Students: Given the Final Score (FS) array containing the final score of 40 students using logical arrays and masks assign the letter grade ' A ' to students obtaining a final score, $\mathrm{FS}>=90$. Assign ' Z ' to the rest. Count the number of As.

With logical arrays and masks

\% Assuming FS is already computed:

```
LG(1:1:numel(FS)) = 'Z'; % LG is a string containing 40 'Z'
FSA = FS>=90; % FSA is logical array
LG(FSA) = 'A'; % ' }A\mathrm{ ' substitute 'Z' for ' }A\mathrm{ ' students
countA = sum(FSA); % count the number of As
```

With for loops and if constructs:
\% Assuming FS is already computed:
count $A=0$;
for $\mathrm{i}=1$: $\mathrm{numel}(\mathrm{FS})$)

> if FS(ii)>=90

LG(ii)='A'; countA=countA+1;
else
LG(ii)='Z';
end
end
18. By logical arrays (and masks) construct the sequence of the coefficients C in the Simpson Rule formulation:

$$
C=\left[\begin{array}{lllllllll}
1 & 4 & 2 & 4 & 2 & 4 & 2 & \ldots & 4
\end{array}\right]
$$

$\begin{aligned} & \text { SOLUTION-1 } \\ & c=o n e s(1, n+1) ; \\ & i i=[1: 1: n+1] ; \\ & b=\bmod (\mathrm{ii}, 2)==0 ; \\ & c(b)=4 .{ }^{*} c(b) ; \\ & b b=\bmod (\mathrm{ii}, 2)^{\sim}=0 ; \\ & c(\mathrm{bb})=2 .{ }^{*} \mathrm{c}(\mathrm{bb}) ; \\ & \mathrm{c}(1)=1 ; \\ & \mathrm{c}(\mathrm{n}+1)=1 ; \\ & (8 \text { lines }) \end{aligned}$	SOLUTION-2 c=ones(1,n+1); ii=[1:1:n+1]; b=mod(ii,2)==0 $\mathrm{c}(\mathrm{b})=4 .{ }^{*} \mathrm{c}(\mathrm{b})$; $\mathrm{c}(\sim b)=2 .{ }^{*} \mathrm{c}(\sim b)$; $\mathrm{c}(1)=1$; $\mathrm{c}(\mathrm{n}+1)=1$; (7 lines)	$\begin{aligned} & \text { SOLUTION-3 } \\ & c=\operatorname{ones}(1, \mathrm{n}+1) ; \\ & \mathrm{b}=\bmod (1: 1: \mathrm{n}+1,2)==0 ; \\ & \mathrm{c}(\mathrm{~b})=4 . .^{*}(\mathrm{~b}) ; \\ & \mathrm{bb}=\bmod (1: 1: \mathrm{n}+1,2)^{\sim}=0 ; \\ & \mathrm{c}(\mathrm{bb})=2 . .^{*}(\mathrm{bb}) ; \\ & \mathrm{c}(1)=1 ; \\ & \mathrm{c}(\mathrm{n}+1)=1 ; \\ & \text { (} 7 \text { lines) } \end{aligned}$
$\begin{aligned} & \text { SOLUTION-4 } \\ & c=o n e s(1, n+1) ; \\ & b=\bmod (1: 1: n+1,2)==0 \\ & c(b)=4 . .^{c}(b) ; \\ & c(\sim b)=2 .{ }^{*} c(\sim b) ; \\ & c(1)=1 ; \\ & c(n+1)=1 ; \\ & (6 \text { lines }) \end{aligned}$	$\begin{aligned} & \text { SOLUTION-5 } \\ & c=o n e s(1, n+1) ; \\ & b=\bmod (1: 1: n+1,2)==0 ; \\ & c(b)=4 ; \\ & b b=\bmod (1: 1: n+1,2)^{\sim}=0 ; \\ & c(b b)=2 ; \\ & c(1)=1 ; \\ & c(n+1)=1 ; \\ & (7 \text { lines }) \end{aligned}$	$\begin{aligned} & \text { SOLUTION- } 6 \\ & c=\operatorname{ones}(1, n+1) ; \\ & b=\bmod (1: 1: n+1,2)==0 \\ & c(b)=4 ; \\ & c(\sim b)=2 ; \\ & c(1)=1 ; \\ & c(n+1)=1 ; \\ & \text { (} 6 \text { lines } \text {) } \end{aligned}$
$\begin{aligned} & \text { SOLUTION- } 7 \text { : } \\ & \begin{array}{l} \mathrm{c}=2 . .^{*} \operatorname{Ones}(1, \mathrm{n}+1) ; \\ \mathrm{b}=\bmod (1: 1: \mathrm{n}+1,2)==0 \\ \mathrm{c}(\mathrm{~b})=4 ; \\ \mathrm{c}(1)=1 ; \\ \mathrm{c}(\mathrm{n}+1)=1 ; \\ \text { (5 lines) } \end{array} \end{aligned}$	$\begin{aligned} & \text { SOLUTION-8: } \\ & \mathrm{c}(3: 2: n-1)=2 ; \\ & \mathrm{c}(2: 2: n)=4 \\ & c(1)=1 ; \\ & c(n+1)=1 ; \\ & (4 \text { lines }) \end{aligned}$	

19. Next is an example of logical arrays application to the Midpoint Integration Rule

Midpoint Integration rule: $\mathrm{I}=2 \mathrm{~h}\left(\mathrm{f}_{2}+\mathrm{f}_{4}+\ldots+\mathrm{f}_{\mathrm{n}}\right)$ where n is even

$$
\int_{a=0}^{b=3} e^{-\frac{x}{2}}\left(2 x-\frac{x^{2}}{2}\right) \mathrm{dx}
$$

clc, clear;

$$
\begin{aligned}
& a=0 ; b=3 ; n=100 ; h=(b-a) / n ; \\
& x=[a: h: b] ; \\
& f=\exp (-x . / 2) .^{*}\left(2 . .^{*} x-x .^{\wedge} 2 . / 2\right) ; \\
& i i=[1: 1: n+1] ;
\end{aligned}
$$

$\mathrm{c}=\bmod (\mathrm{ii}, 2)==0$;
$\mathrm{t}=\mathrm{c}$. ${ }^{*} \mathrm{f} ; \quad \mathrm{l}=2^{*} \mathrm{~h}^{*}$ sum (t);
20. By logical arrays (and masks) construct the sequence of the coefficients C in the Simpson Rule formulation:

```
                                    C=[lllllllllllllll
n=12;
c=3*ones(1,n+1); % also c(1:1:n+1)=3 % initially all are 3
ii=[1:1:n+1];
b=mod(ii,3)==1; % also b=mod(1:1:n+1,3)==1
c(b)=(2/3)*c(b); % also c(b)=2/3
c(1)=1;
c(n+1)=1;
c % to print the results
```

