BOUNDARY VALUE ODEs

Exercises due on Dec 4, 2014
27.23 Use finite differences to solve the boundary-value ordinary differential equation

$$
\frac{d^{2} u}{d x^{2}}+6 \frac{d u}{d x}-u=2
$$

with boundary conditions $u(0)=10$ and $u(2)=1$. Plot the results of u versus x. Use $\Delta x=0.1$.
27.24 Solve the nondimensionalized ODE using finite difference methods that describe the temperature distribution in a circular rod with internal heat source S

$$
\frac{d^{2} T}{d r^{2}}+\frac{1}{r} \frac{d T}{d r}+S=0
$$

over the range $0 \leq r \leq 1$, with the boundary conditions

$$
T(r=1)=\left.1 \quad \frac{d T}{d r}\right|_{r=0}=0
$$

for $S=1,10$, and $20 \mathrm{~K} / \mathrm{m}^{2}$. Plot the temperature versus radius.

Take as an example the problem 27.24 (see also solution manual):

Problem 27.24 BOUMDARY VOUE PROBLEM
"Numerical Methods for Engineers", $6^{\text {th }}$ Edition By Chopra \& Candle

Solve the nondimensionalized ODE that describe the temperature distribution in a a circular rod with internal heat source S

temperature is the same along concentric cylinders the 1D heat equation in cylindrical coordinates takes the form

$$
\text { (1)- } \frac{d^{2} T}{d r^{2}}+\frac{1}{r} \frac{d T}{d r}=-S
$$

over the range $0 \leq r \leq 1$ with the boundary conditions
(2) $\Gamma(r=1)=1$
(3) $\left.\frac{d T}{d r}\right|_{r=0}=0$

Solve the equatim for three different values of $S=1,10,20 \mathrm{k} / \mathrm{m}^{2}$

Plot the temperature vs radius

1. Divide the radial coordinate into n finite points. 2 (where $i=1,2, \ldots n$; i.e. indices of the se points start at $i=1$ ')
(4) $\Delta r=\frac{R^{1}}{n-1}$

2,- The central difference approximation for the derivatives and for the general point i

$$
\begin{aligned}
& \text { (5) } \frac{d^{2} T}{d r^{2}}=\frac{T_{i+1}-2 T_{i}+T_{i-1}}{\Delta r^{2}}\left\{\begin{array}{l}
\text { see Numerical } \\
\text { Differentiation } \\
\text { class notes } \\
\text { (6) } \frac{d T}{d r}=\frac{T_{i+1}-T_{i-1}}{2 \Delta r} \quad\left\{\begin{array}{l}
\text { page for } \\
2^{\text {nd }} \& 1^{\text {st }} \text { derivatives } \\
\text { of order }\left(h^{2}\right)
\end{array}\right.
\end{array}\right. \text { (derivatives and }
\end{aligned}
$$

(7) $\quad \gamma=\Delta r(i-1)$
3.- Substituing in the finite difference approximation for the derivatives:

$$
\frac{d^{2} T}{d r^{2}}+\frac{1}{r} \frac{d T}{d r}=-S
$$

(8) $\frac{T_{i+1}-2 T_{i}+T_{i-1}}{\Delta r^{2}}+\frac{1}{\Delta r(i-1)}\left(\frac{T_{i+1}-T_{i-1}}{2 \Delta r}\right)=-S$

Multiplying by Δr^{2} the equation
(9) $T_{i+1}-2 T_{i}+T_{i-1}+\frac{1}{2(i-1)} T_{i+1}-\frac{1}{2\left(C_{i-1}\right.} T_{i-1}=-\Delta r^{2} S$

Collecting like terms:
(10) $\left[1-\frac{1}{2(i-1)}\right] T_{i-1}+(-2) T_{i}+\left[1+\frac{1}{2\left(i_{i-1}\right)}\right] T_{i+1}=-\Delta r^{2} S$
5.- Boundary Condition @ $r=0 \quad(i . e . i=1)$
(II) $\left.\frac{d T}{d r}\right|_{r=0}=0$
(12) $\left.\frac{T_{i+1}-T_{i-1}}{2 \Delta r}=0\right\} \begin{gathered}\text { Central Difference } \\ \text { app pox } \theta\left(h^{2}\right)\end{gathered}$
for $i=1 \quad \quad \sim$ fictitious print

$$
\begin{align*}
& =1 \tag{13}\\
& \frac{T_{2}-T_{0}^{\kappa}}{2 \Delta r}=0 \Rightarrow T_{2}=T_{0} . \text { fictitious prim }
\end{align*}
$$

Gr Develop (10) for $i=1$:
(14) $[1-\underbrace{\frac{1}{2(1-1)}}_{-\infty}] T_{0}+(-2) T_{1}+[1+\underbrace{\frac{1}{2(1-1)}}_{+\infty}] T_{2}=-\Delta r^{2} S$
(15)

$$
\begin{aligned}
& T_{0}+(-2) T_{1}+T_{2}+\phi-\infty=-\Delta r^{2} S \\
& \text { apply (13) to }(15) \\
& T_{2}+(-2) T_{1}+T_{2}=-\Delta r^{2} S \\
& \text { (16) }(-2) T_{1}+2 T_{2}=-\Delta r^{2} S
\end{aligned}
$$

Alternatively move the first point $i=1$ to $i=1+1 / 2$ (i.e. $i=3 / 2$) collect like terms \& cancel some, then move back half a point $i=\frac{3}{2}-\frac{1}{2}=1$ to end @ the same one.

Gr To apply the last boundary condition
$T_{n}=\Phi$ develop (10) at $i=n-1$

$$
\begin{aligned}
& {\left[1-\frac{1}{2(n-1-1)}\right] T_{n-1-1}+(-2) T_{n-1}+\left[1+\frac{1}{2(n-1-1)}\right] T_{n-1+1}=} \\
& =-\Delta r^{2} S
\end{aligned}
$$

$$
\begin{aligned}
& =-\Delta r^{2} S \\
& {\left[1-\frac{1}{2(n-2)}\right] T_{n-2}+(-2) T_{n-1}+\left[1+\frac{1}{2(n-2)}\right] T_{n}=-\Delta r^{2} S}
\end{aligned}
$$

$$
\left[1-\frac{1}{2(n-2)}\right] T_{n-2}+(-2) T_{n-1}=-\Delta r^{2} S-\left[1+\frac{1}{2(n-2)}\right]
$$

Resuming
$1^{\text {st }}$ Equation

$$
(-2) T_{1}+2 T_{2}=-\Delta r^{2} S
$$

Next $i=2,3, \ldots n-2$

$$
\begin{aligned}
& \text { Next } i=2,3, \ldots n-2 \\
& {\left[1-\frac{1}{2(i-1)}\right] T_{i-1}+(-2) T_{i}+\left[1+\frac{1}{2(i-1)}\right] T_{i+1}=-\Delta r^{2} S}
\end{aligned}
$$

Last Equation

$$
\begin{aligned}
& \text { Last Equation } \\
& {\left[1-\frac{1}{2(n-2)}\right] T_{n-2}+(-2) T_{n-1}=-\Delta r^{2} S-\left[1+\frac{1}{2(n-2)}\right]}
\end{aligned}
$$

These system of equations yields a Tridiagmal Matrix which can be easily solved by Thoma's alg.

