
Standard Function Exercises

File: Standard Function Exercises (May 15,2018)

Course Learning Objectives:

• Apply syntax rules to design standard, recursive, anonymous, and nested functions

o Demonstrate how to design, save, call, run, and debug a function, including

▪ Identify input and output arguments to construct a function

▪ Develop the algorithm within the function

▪ Employ debugging strategies to debug a function

Action verbs for student learning outcomes:
https://www.mnstate.edu/assess/poa/actionverbs.aspx

Output Arguments: Syntax requirements

1. If your function returns one output, you can specify the output name after the function
keyword in two ways:

function myoutput = myFunction(X,Y)
function [myoutput]=myFunction(X,Y)

2. If your function returns more than one output, enclose the output names in square
brackets:

function [A,B,C] = myFunction(Z)
3. If there is no output, you can omit the brackets or use empty square brackets:

function myFunction(X,Y)
function [] = myFunction(X,Y)

Input Arguments: Syntax requirements

4. If your function accepts any number of inputs, enclose their names in parentheses after
the function name. Separate input names with commas:

function [A,B] = myFunction(X,Y,Z)
5. If there are not inputs, you can omit the parentheses

function [C] = myFunction

15-Exercises Standard Functions

Basic Exercises

1. Write a function to compute the complementary sine:

𝑠𝑖𝑛𝑐(𝑥) =
sin(𝑥)

𝑥

Then write a Driver program to calculate the complementary sine function (i.e., sinc(x)) for

values of x from 1.0 up to 10.0 in increments of 0.1

𝑠𝑖𝑛𝑐(𝑥) =
sin(𝑥)

𝑥

2. Write a function to convert km to miles. Upgrade the previous functions to handle

arrays at Input and Output.

3. Write a MATLAB user-defined function (call it worldSalute) aiming to salute the world as

“Hello there world.” The function uses no arguments and returns no values to the calling

program.

4. Write three user-defined functions to calculate the hyperbolic sine, cosine, and tangent

functions:

Choose a name to avoid syntax conflicts, e.g.: iSinh, iCosh, and iTanh, respectively. Use
your functions to plot the shapes of the hyperbolic sine, cosine, and tangent functions
by writing a program that computes them for common ranges.

MEDIUM COOK Exercises

5. Create the MATLAB iSum library function that adds up the elements of any 1D array, for

instance the t array with N elements and returns the sum. The sum is defined by:

𝑠𝑛 = 𝑡1 + 𝑡2 + ⋯ + 𝑡𝑛

Assume the iSum function will exist in MATLAB for the first time. You can use any other

MATLAB library function within your function except by sum. Could you upgrade the above

function to work also with 2D array input.

6. Developing a function using one as a model. Taking as basis (or source of inspiration) the

algorithm in the function minimum2 on your notes, develop a new function and called it,

maximum2 which will find the maximum of an array-x. Your function should use only one

argument, i.e., x. Show how you call your function in the command window:

7. Write the user-defined function diffSquare in charge of calculating the square of the absolute

value of the difference between two (2) scalar values stored in x and y variables, respectively.

8. Expand the above function to work with two 1D arrays, x and y, with the same number of

elements, each. Hence an array representing the absolute value of the differences between

each corresponding element (element wise) in x and y are returned by the function

9. Create the iMax library function that finds the maximum element of an 1D array, for instance

the maximum of the x array and returns the result. Assume that x has usually n elements. A

convenient algorithm is to assume the first element of x is the largest, then replaced it by any

other that if compared with it resulted larger, this approach continues until the last element. At

each step two consecutive values on the list are compared and decision is made if the 2nd one is

larger it replaces the 1st, otherwise the 1st continues to be the reference base for the next

comparison. Use the numel function to determine the elements in x. Can’t use the max library

function.

10. Upgrade iMax to handle 2D array input

11. Write the function myOnes(x). A typical call with x=3 as the input argument, gives a 3 x

3 array of ones.

12. Write the function myTriangulos(x).

Where x is an integer variable. A

typical call with x=5 as the input

argument, gives a triangle like:

55555
5555
555
55
5

13. Create the MATLAB library myPi parameter up to 15 decimal digits of accuracy, such

that whenever pi is writen MATLAB will insert the pi value. This parameter can be
created as a MATLAB function. In order to look as a parameter, write the function such
as to call it, it won’t need of input arguments.

The first 100 decimal digits of π are 3.14159 26535 89793 23846 26433 83279 50288
41971 69399 37510 58209 74944 59230 78164 06286 20899 86280 34825 34211
70679… Show how you can use myPi in a Driver program.

14. Write a function prod which computes the cumulative product of the elements in a

vector. The cumulative product of the vector x, is defined by
p = (x1)(x2) ... (xn)

15. Create the MATLAB myLinspace(a,b,nn) library function that returns a vector with nn equally

spaced values from a up to b.

10.- Write a MATLAB script that uses the library function min() (see MATLAB help for
syntax, arguments, and examples) to compute the minimum of seven integers and the position
in the set stored in an array called numset=[11,7, 5, 9, 3, 15, 4]. The program must be in-charge
of printing the data and the results with appropriate statements.

% This program computes the minimum of
% seven integers stored in an array called numset.
% The program uses the min library function

clear, clc
numset=[11 7 5 9 3 15 4];
% call the library function min
[minimo, position]=min(numset)

11.- Write the function square that displays at the left margin of the screen a solid square
of asterisks whose side is specified in a parameter side. For example if side is 4, the function
displays:

SOLUTION
function square(s)
% This function draws an square of "*" of side s

 for ii = 1:1: s
 for jj = 1:1:s
 fprintf('*');
 end
 fprintf('\n');
 end

Calling the function in the Command Window:
>>x=10;
>> square(x)

12.- Modify the function created in problem 7 to form the square out of whatever character
is contained in a character parameter squaresymbol. If side is 5 and squaresymbol is “#” then
the function should print:

SOLUTION
function squareSymbol(s, c)
% This function draws an square of c-characters of % side s
 for ii = 1:1: s
 for jj = 1:1:s
 fprintf('%c',c);
 end
 fprintf('\n');
 end

Calling the function in the Command Window:
>> s=5
s =
 5
>> c='#'
c =

>> squareSymbol(s,c)

13.- The location of a point P in a Cartesian plane can be expressed in either the

rectangular coordinates (x,y) or the polar coordinates (r,), as shown in the figure below. The
relationships among these two sets of coordinates are given by the following equation:

x

y
tan

yxr

sinry

cosrx

1

22















Write two functions rectTOpolar and polarTOrect that convert coordinates from rectangular to

polar form, and vice versa, where the angle  is expressed in degrees.

Note that MATLAB’s (and also C’s) trigonometric functions work in radians, so we must convert
from degrees to radians and vice versa when solving this problem. The relationship between

degrees and radians is: 180 degrees =  radians
In these exercises you should pay attention to syntax requirements:

✓ Input and Output arguments
✓ Function header syntax (the first line in the function structure)

• function “the key word” (without the key word you have nothing)

• function name,

• the variable(s) storing the result(s)
✓ Function body (the function computations and algorithm)
✓ Function termination statement (i.e., ‘end’)
✓ Calling the function from a program, command window or statement by

providing appropriate arguments

HARD

y

x

P
r



1.- In a new programming job at Mathworks Headquarters your assignment is to create the

MATLAB natural logarithm library function, as usual we called this “iLog.” The iLog function

returns the natural logarithm of a given scalar x numerical value. Advice the user that x must be

a positive value. To compute the natural logarithm, use the Taylor series expansion below.

𝐥𝐧(𝐱) = 2 {(
x − 1

x + 1
) +

1

3
(

x − 1

x + 1
)

3

+
1

5
(

x − 1

x + 1
)

5

+ ⋯ } x > 0

or

𝐥𝐧(𝐱) = 2 ∑
1

2n − 1
(

x − 1

x + 1
)

2n−1
∞

2𝑛−1

You must decide the value of n

function [s] = iLog(x)

% Computes the natural logarithm with Taylor series

% x must be a positive value

 if x<=0

fprintf(‘ Error, x must be positive’);

else

 s=0; t=(x-1)/(x+1)

for k=1:2:19 % assumed n=10 terms

tt= (1/k)*t^k;

ss=ss+ tt;

end

s=2*ss

end

end

function [s] = iLog(x)

% Computes the natural logarithm with Tayler series

% x must be a positive value

n=1:2:50 % assumed 50 terms

t= (1./(2.*n-1)).*((x-1)/(x+1).^(2.*n-1);

s=2*sum(t);

end

2.- Assume you got a new programming job at Mathworks Headquarters and you have been

requested to create the MATLAB exponential library function, iExp, that returns the exponential

of a given scalar x numerical value. To compute the exponential, use the Taylor series

expansion below:

function [s] = iExp(x)

% Computes the exponential function

 s=1; f=1;

for k=1:1:20 % assumed 20 terms

f=f*k;

t= (x^k)/f;

s=s+ t;

end

end

3.- You have been assigned to create the MATLAB sine library function, iSin(x), that returns the sine

of a given angle x in radians. To compute the sine, use the Taylor series expansion below. Hint: you can

use the factorial library function.

function [s] = iSin(x)

% Computes the sine function

 s=0; ii=2;

for k=1:2:29 % assumed 14 terms

t= (x^k)/factorial(k)

s=s+(-1)^ii* t;

ii=ii+1;

end

end

function [s] = iSin(x)

% Computes the sine function

 s=0; f=1; jj=2;

for k=1:2:29 % assumed 14 terms

 f=1;

for ii=1:1:k

 f=f*ii;

 end

t= (x^k)/f;

s=s+ (-1)^jj*t;

jj=jj+1

end

end

4.- Write a user-defined function called cMP to compute the coefficients in the Midpoint’s

integration rule.

 2 4 6 8 22 ... n nI h f f f f f f     

Note the ii-index in the formula jumps as 2, 4, 6 and that coefficients with ii=1, 3, 5, 7, .. n+1 are zero:

c=[0,1,0,1,0,1,…,1,0];

SOLUTION

function c=cMP(n)
% Computes the coefficients in
% Midpoint Integration Rule

 % n must be even
 for ii=1:1:n+1
 if mod(ii,2)==0
 c(ii)=1
 else
 c(ii)=0
 end
 end
end

function c=cMP(n)
 % Computes the coefficients in Midpoint
 % Integration Rule
 % n must be even

c(1:2:n+1)=0;
c(2:2:n)=1;

end

One more compacted solution

function c=cMP(n)

 % Computes the coefficients in Midpoint

 % Integration Rule

 % n must be even

 c=mod(1:1:n+1,2)==0;

end

5.- The following formula generate n integer values from the uniform distribution on the interval [a,

b]:

𝑟 = 𝑟𝑜𝑢𝑛𝑑(𝑎 + (𝑏 − 𝑎).∗ 𝑟𝑎𝑛𝑑(1, 𝑛));

For instance, for one dice with range between a=1 and b=6, played n=6 times, with the formula above

MATLAB produces:

r =

 2 3 6 3 4 2

Six integer values in the range [a, b] = [1,6].

Write a function named dices that receive the number of times, n, three dices will be played and returns

the 3n values. Store the values of dice 1, 2, and 3 in the x-, y- and z- arrays respectively.

function [x,y,z] = dices(n)

 % The random generator of 3 dices played n times

 % etc.

 x =round(1+(6-1).*rand(1,n));

y =round(1+(6-1).*rand(1,n));

z =round(1+(6-1).*rand(1,n));

end

6.- Create the MATLAB user-defined function that computes de iPi function with the series shown

below. To compute the series you must assume a number of terms. Write the function such as

to call it, it won’t need of input arguments.

𝜋 =
4

1
−

4

3
+

4

5
−

4

7
+

4

9
−

4

11
+

4

13
… = 4(1 −

1

3
+

1

5
−

1

7
+

1

9
−

1

11
+

1

13
…)

function [s] = iPi % no input argument

% Computes the mathematical pi parameter as a

% MATLAB library function

 ii=2; s=0;

for k=1:2:19 % 10 iterations, 10 terms

s=s+(-1^ii)*4/k

 ii=ii+1;

end

end

 10.1- Show how you can use the function iPi to compute the following statements.

7.- The Fibonacci series 0, 1, 1, 2, 3, 5, 8, 13, 21,… begins with the terms 0 and 1 and has the

property that each succeeding term is the sum of the two preceding terms. This can be expressed as:

21   iii FFF

Write a nonrecursive function fibonacci(n) that calculates the nth Fibonacci number.

8.- Assume you will create the MATLAB factorial library function, iFactorial(n), that returns the

factorial of n. To compute the factorial you can use the following definitions:

0! = 1

1! = 1

𝑛! = 1 𝑥 2 𝑥 3 𝑥 … 𝑛

function fac=iFactorial(k)
% This function computes the factorial of k

 fac=1
 if k==0
 fac=1
 elseif k==1
 fac=1
 else

 for ii=1:1:k
 fac=fac*ii;
 end

Not necessary, why?

 end
end

9.- Write the function iTrapz in charge of implementing the Trapezoidal integration rule
with x and f arrays as input arguments with n+1 elements . The output value is the integral
result. A typical call to the function would be iTrapz(x,f). Hint: the following formulas can be
considered in the solution.

n=length(x),
h = (x(1)-x(n+1))/n;

     


















1321

14321 2...222
2

1

nn t

n

t

n

ttt

ffffffhI

function [I] = iTrapz(x,f)
 % Computes Trapezoidal integration for given function of x

 n=length(x);
 h = (x(1)-x(2))/n;

 c(1)=1; c(2:1:n)=2; c(n+1)=1;

 t=c.*f;
 I = (1/2)*h*sum(t);

end

10.- Write the function iLinSpace(A,B) which uses the matrix A and the vector B as input
arguments to find the solution vector X, according to:

function [X] = iLinSpace(A,B)
 % Computes the solution vector of the AX=B system of equations

 X=A\B;

end

11.- Create the MATLAB user-defined function that computes the pi function with the
series shown below. To compute the series you must assume a number of terms. Write
the function such as to call it, it won’t need of input arguments.

𝜋 = 3 +
12

6 +
32

6 +
52

6 +
72

6 +
92

6 + ⋯

function [s] = pi % no input argument
% Computes the mathematical pi parameter as a
% MATLAB library function

 s=11^2/6;

for ii=9:-2:1 % 5 iterations
s=6+(ii^2/s);
end

 s=s+3;
end

Other possibilities to practice programming structures are:

12.- Consider the function:

function [LG]=letterGrade(score)

% Assigns a letter grade to given numerical grade, score

% score=numerical grade

% LG= the letter grade is a char variable

if score>=90

 LG=’A’;

 elseif score>=80

 LG=’B’;

 elseif score>=70

 LG=’C’;

 elseif score>=60

 LG=‘D’;

 else

 LG=‘F’;

 end

end

13.- An integer number is said to be a perfect number if its factors, including 1 (but not the
number itself), sum to the number. For example, 6 is perfect number because 6 = 1 + 2 + 3.
Write the function perfect that determines if parameter number is a perfect number. Use this
function in a program that determines and prints all the perfect numbers between 1 and 1000.
Print the factors of each number to confirm that the number is indeed perfect (ref: Problem
5.26, C How to Program by Deitel)

SOLUTION
% perfectMain.m
% This program reports if the numbers from 1 to 1000 are or not perfect

 fprintf(' For the integers from 1 to 1000: \n');

 for jj = 1:1:1000
 if (perfect(jj))
 fprintf(' %d is perfect \n ', jj);
 end
 end

function y=perfect(x)
% This function computes if a number x is perfect or not
%
 factorSum = 1;

 for ii = 2:1:(x/2)
 if mod(x,ii)== 0
 factorSum = factorSum + ii;
 end

 end

 if (factorSum == x)
 y= 1;
 else
 y=0;
 end
end

Running the program in the command window:
>> perfectMain
 For the integers from 1 to 1000:
 1 is perfect
 6 is perfect
 28 is perfect
 496 is perfect

NEXT FUNCTIONS ARE NOT RATED YET

31.- Road Traffic Density. Function random produces a number with a uniform probability
distribution in the range=[0.0,1.0]. This function is suitable for simulating random events if each
outcome has an equal probability of occurring. However, in many events, the probability of
occurrence is not equal for every event, and a uniform probability distribution is not suitable for
simulating such events.
 For example, when traffic engineers studied the number of cars passing in a given
location in a time interval of length t, they discovered that the probability of k cars passing
during the interval t is given by the equation

 
 

!
,

k

t
etkP

k

t 
 for t 0, >0, and k=0,1,2,…

This probability distribution is known as the Poison distribution; it occurs in many applications
in science and engineering. For example, the number of calls k to a telephone switchboard in
time interval t, the number of bacteria k in a specific volume t of liquid, and the number of
failures k of a complicated system in time t all have Poisson distributions.
 Write s function to evaluate the Poisson distribution of 0, 1, 2, …, 5 cars passing a

particular point on a highway in 1 minute, given that  is 1.6 per minute for that highway. Plot

the Poisson distribution for t=1 and =1.6.

SOLUTION

function prob=poisson(k,t)

% This function computes the poisson distribution
% k= number of cars
% t= time
landa=1.6
prob=exp(-landa*t)*(landa*t)^k/factorial(k) ;

end

function fac=factorial(k)
% This function computes the factorial of k

 fac=1
 if k==0
 fac=0
 elseif k==1
 fac=1
 else

 for ii=1:1:k
 fac=fac*ii;
 end
 end

32.- Write a program to compute the sine function with the Taylor series expantion. Once
you have it, develop the usin function. Problem developed in class (july-02-2012)

1.- Show how you can use logical arrays and masks to double the even numbers in the x array. To

test your program, assume the x array has n elements, where n =10:

 Given: x =[1,2,3,4,5,6,7,8,9,10]

 Ouput: x=[1,4,3,8,5,12,7,16,9,20]

 SOLUTION

clc, clear;

x =[1,2,3,4,5,6,7,8,9,10];

b=mod(x,2)==0;

x(b)=2.*x(b); % also, simpler: x(b)=2;

33.- Recursive Functions

The underlying principle is very simple: a function that can call itself. In other word, something

like this:

function f = fact(x)
% Computes the factorial of x

if (x == 1)
 f= 1;
else
 f= x*fact(x-1); % function call
end

end

Another version:

function f = fact(x)
% Computes the factorial of x

If x>1
f=x*fact(x-1); % function call

else
 f=1;
end

end

FUNCTION DEVELOPMENT AND THE SIMPSON 3/8 RULE

We will use the following solutions for a deeper understanding of the

function structure development

Solution #1. This solution resembles more the syntax of traditional high

level languages, such as, FORTRAN, C, Basic, Pascal.

% Simpson 3/8 Integration Rule

% This program computes an integral using the Simpson (3/8) rule

%

% V.N:

% a = lower integration limit; b = upper integration limit

% n = must be multiple of six, h= ; x= ; c= ; f= ; t= etc.

% I=

clc; clear;

a= 0; b= 2; n= 60; s=0;

h=(b-a)/n;

for ii=1:1:n+1

 if ii==1

 x(ii)=a;

 else

 x(ii)=x(ii-1)+h;

 end

 if ii==1 | ii==n+1

 c(ii)=1;

 elseif mod(ii,3)==1

 c(ii)=2;

 else

 c(ii)=3;

 end

 f(ii)= 2+cos(2*sqrt(x(ii)));

 t(ii)=c(ii)*f(ii);

 s = s + t(ii);

end

 I = (3/8)*h*s;

 fprintf('The results of the integration is %f ',I);

Solution #2. This solution uses the more sophisticated MATLAB

statements, whose syntax and features is a characteristic of

MATLAB.

% Simpson 3/8 Integration Rule

% This program computes an integral using the Simpson (3/8) rule

% The code is vectorized

% V.N:

% a = lower integration limit

% b = etc.

% h= etc.

% n = must be multiple of six

clc; clear;

a= 0; b= 2; n= 60;

h=(b-a)/n;

x =[a:h:b];

f = 2 + cos(2.*sqrt(x));

c(1:1:n+1)=3; % all are three

c(4:3:n-1)=2; % some are replaced by 2

c(1)=1; c(n+1)=1; % extremes are replaced by 1

t=c.*f;

I = (3/8)*h*sum(t);

fprintf('The results of the integration is %f',I);

Solution #3 Functions

function cc=c(n)

% calculates the coefficients in Simpson 1/3 rule

% n = the number of panels must be multiple of six

for k=1:1:n+1 % c-values are one more than the number of panels

 if ii==1 | ii==n+1

 cc(k)=1;

 elseif mod(ii,3)==1

 cc(k)=2;

 else

 cc(k)=3;

 end

end

end

Another alternative:

function cc=c(n)

% calculates the coefficients in Simpson 1/3 rule

% n = the number of panels must be multiple of six

cc(1:1:n+1)=3; % all are three

cc(4:3:n-1)=2; % some are replaced by 2

cc(1)=1; c(n+1)=1; % extremes are replaced by 1

end

This solution uses the function c previously developed and the most

sophisticated MATLAB statements. Note how the MATLAB code is becoming

shorter.

% Simpson 3/8 Integration Rule

% This program computes an integral using the Simpson (3/8) rule

%

% V.N:

% a = lower integration limit

% b = etc.

% n = must be multiple of six

clc; clear;

a= 0; b= 2; n= 60;

h=(b-a)/n;

x =[a:h:b];

f = 2 + cos(2.*sqrt(x));

t=c(n).*f;

I = (3/8)*h*sum(t);

fprintf('The results of the integration is %f ',I);

24.- Write a MATLAB program that uses a function to verify if a list of 10 integer values
stored in an array variable are odd or even. The program must be in-charge of reading and
printing the data and the results with appropriate statements. Hint: develop a function that
verifies if one value is odd or even then place the function within a loop to verify the list.

The following program was stored as oddevenmain.m
% This program uses a user-defined function to verify if
% a list of 10 inter values stored in an array

% variable are odd or even. The program is in-
% charge of reading and printing the data and
% the results with appropriate statements in
% external files.

listValues=[3 7 1 9 2 8 5 4 6 0]

% the program checks values one-by-one
for ii=1:1:10
 if oddeven(listValues(ii))
 fprintf(‘ %d is even’,ii);
else
 fprintf(‘ %d is odd’,ii);
end

To run the code type oddevenmain in the Editor

__

Following function was stored as oddeven.m file:

function sino=oddeven(x)

% This function finds if a number is even or not
% returns 1 if even, and zero otherwise
if mod(x,2)== 0
 sino=1;
else
 sino=0;
end

end

